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SUMMARY 

In the first part of this paper a numerical strategy is developed for the numerical simulation of the 
coextrusion process. Coextrusion consists of extruding many polymers in the same die in order to combine 
their respective properties. The die is generally flat and quite large and consequently a two-dimensional 
approximation is sufficient. The main difficulty is to accurately predict the interfaces between the different 
layers of polymers. A finite element method based on a pseudoconcentration function is developed to 
calculate these fluid interfaces. Numerical results are presented for the coextrusion of up to five fluids. 

In the second part of the paper the above strategy is slightly modified to simulate the film-casting process. 
In this case a polymer is stretched (with a draw velocity U,) at the exit of the die in order to produce a 
very thin layer of polymer that is cooled in contact with a chill roll. Only one polymer-air interface has 
to be computed. The draw ratio is defined as Dr = UL/u, where 0 is the mean velocity of the polymer 
at the exit of the die. As the draw ratio is increased, instabilities appear and numerical results put in 
evidence the draw resonance phenomenon. 

KEY WORDS Coextrusion Film casting Finite element Pseudoconcentration 

1. INTRODUCTION 

Polymers are omnipresent. They are used in the aerospace industry, in automobiles and in a 
large number of everyday objects. Many processes exist in the polymer industry. One of them 
is the coextrusion process, which is particularly important in the wrapping industry. The idea 
is to combine many non-miscible polymers to obtain a product with specific properties such as 
impermeability, aesthetic quality, resistance, etc. In that specific case the molten polymers are 
extruded in a flat die. The main difficulty of this process is to balance the flow in order to obtain 
optimal thicknesses for each layer of polymer. These thicknesses will strongly depend on the 
shear-thinning behaviour of the polymers and on the different flow rates imposed at the inlet 
of the die.' 

To compute fluid interfaces, at least two strategies are possible: tracking and capturing. The 
first strategy tracks the interface and requires full or partial remeshing of the domain in order 
to follow the interfaces. Consequently, the mesh evolves until it matches the different interfaces. 
The reader is referred to Reference 2 for an application of the tracking method to the numerical 
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prediction of extrudate swell. This method requires very efficient remeshing techniques and does 
not seem to be well adapted for time-dependent problems. 

On the other hand, the capturing strategy requires a single mesh and the different interfaces 
are determined by a function S (often called the pseudoconcentration) which is computed in the 
whole domain. This, however, requires the solution of a supplementary partial differential 
equation of hyperbolic type of the form 

d 
- S(3, t )  + (ii * V)S(3, t )  = 0 
at 

v3 E Q, 

where fi = (u1(3), u 2 ( i ) )  is the velocity field. This strategy was adopted in the volume-of-fluid 
(VOF) method of Hirt and Nichols3 and in the pseudoconcentration method of T h o m p ~ o n . ~  
The reader is referred to the excellent paper of Shen’ for a review of these methods in the context 
of injection moulding. 

In this paper a capturing strategy is adopted, since we are interested in both stationary and 
time-dependent  problem^.'.^.^ The discontinuous Galerkin method is used for the computation 
of the pseudoconcentration function. Numerical results show the accuracy and flexibility of the 
proposed method. 

Let us now present the equations governing the movement of the polymer and the interface 
positions. 

2. EQUATIONS 

2.1. Stokes problem 

In these simulations inertia and gravitational forces are neglected, as is the case for most 
polymer-processing applications.* Moreover, surface tension is not taken into account at fluid 
interfaces since it is generally negligible in the two applications under study. Consequently, the 
momentum equations can be written as 

(1) v . 0  = 0, 
- 

where is the Cauchy stress tensor defined by 

0 = -pI + t. (2)  
The extra-stress tensor t is related to the velocity field by the relation’ 

t = 21( I P I )W), (3 )  

where ?(ti) = f [Vi i  + (ali)T] is the rate-of-deformation tensor and = PijPji is its norm (the 
Einstein notation has been used). One can remark that the viscosity q depends on the norm 
of the rate-of-deformation tensor, 1 1, expressing the shear-thinning behaviour of polymers. 

Different models exist, all based on experimental data, to take into account shear-thinning 
effects. Figure 1 illustrates three of these models: the Newtonian law, the power law and the 
Carreau model. The last one is the most general because it follows experimental data on a wider 
range of rate of deformation. The viscosity law has the form 

q(lfl) = qo(c + A21Plz)(”-1)’2,  (4) 
where the Carreau law corresponds to c = 1. Usually A, qo and n are determined from 
experimental data through curve fitting. The power law is obtained by setting c = 0, while the 
Newtonian law corresponds to n = 1 (constant viscosity). 
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Figure 1 .  Viscosity models 

Combining all these properties, the problem to solve becomes 

2 a  * (?( I L I )?(a)) = QP> 

together with the incompressibility condition 

a .  a = 0. 

Finally, a supplementary equation is needed to determine the position of the interface between 
any two molten polymers. This position is determined by a transport equation described in the 
next subsection. 

2.2. The pseudoconcentration method 

For the sake of completeness let us recall the basic assumptions of the pseudoconcentration 
method introduced by Thompson4.'0 and which presents similarities with the volume-of-fluid 
method of Hirt and N i c h o l ~ . ~  

At polymer interfaces two conditions are to be satisfied. The first one merely states that the 
interface is at equilibrium and can be written as 

61 - ii = 62 * ii, (7) 
where oi, i = 1 ,  2, is the Cauchy stress tensor on each side of the interface and ii is the 
normal vector. This condition will be a direct consequence of the variational formulation, as 
will be discussesd in Section 3. 

The second condition on the interface expresses the non-miscibility of the polymers. Suppose 
that two polymers are coextruded. The general case is similar. They are separated by the interface 
8 which is a priori unknown. Figure 2 illustrates the domain. One can define a function S(2, t )  
in the whole domain R by setting 

1 if2ER1, 
0 i f2ER2.  

S(2, t )  = 
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Figure 2. Domain with two fluids 

This function is called the pseudoconcentration. The position of the interface is at the jump 
of the function S (see Figure 2). 

To compute the pseudoconcentration, let us consider an initial volume 9 in R containing 
the same particles at any time. At time t the volume 9 is allowed to deform with the flow and 
to become fl. Any particle inside 7va at t = 0 will remain in W at time t. Consequently, 

One can show” that 

d D 
S(2, t )  dx dy 2 - S(2, t )  dx dy, L; Dt 

where D/Dt = d/at + ( t i .  a). Since this is true for all Y o  (and thus for all F), we get the 
condition 

a 
~ S(2, t )  + (ti * V ) S ( i ,  t )  = 0 
at 

v i  E R. ( 1  1 )  

This relation is valid in the entire domain R. In other words, the solution of this transport 
equation (12) is equivalent to the non-miscibility condition and also determines the position of 
the interface between the two fluids. This is done by searching the jump in the function S. From 
a practical standpoint, one looks for the isovalue f of the function S. 

For the coextrusion problem, only stationary solutions are of interest and the time derivative 
term is neglected. The equation reduces to 

However, for film-casting problems,’ 231 time-dependent solutions arise after the onset of 
the instabilities and in that case the time derivative will be discretized by a fully implicit Gear 
scheme which can be written as 

The Gear scheme is second-order in time and has been proven to be very accurate for the 
prediction of time-dependent problems.’ 
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2.3. Boundary conditions 

Suppose p fluids are coextruded in a very simple flat die like the one in Figure 3. Then 
Q = ug= lQk. The interfaces are between each domain k = 1 , .  . . , p - 1, and their positions 
are a priori unknown. 

Boundary conditions for the velocity field must be provided on each of the rk. This is a 
delicate question, since the flow can be rather complex before entering the die. However, since 
viscoelastic effects are neglected, the developed velocity profile in the die should not depend on 
the precise form of the imposed velocity profile on rk. The interfaces depend strongly, however, 
on the respective flow rates Q" in each layer of polymer. Consequently, parabolic profiles with 
given flow rates Q" are imposed on each rk. Flat profiles with the same flow rates would give 
similar results. 

A no-slip condition is imposed on each plate I-,, at the top and bottom of the die. At the die 
exit the flow, and thus the interface, is supposed fully developed. 

To summarize, the boundary conditions are 

tik = Qk(ut((y), o), zi.Erk, k = 1,. . . , p, 

t i=o,  i € r b ,  (14) 
u2 = 0 and (ct-yi), = 0, K E ~ , ,  

where uk,(y) are parabolic profiles with unit flow rate. In this manner the flow rates in 
each layer can be easily changed and their effects on the interfaces can be put in evidence. 

For the transport equation (12) a boundary condition must be provided only on the inflow 
part of the boundary defined as 

x- = {KEQlt i ( i )* i i (K)  < 0) .  (15) 

The inflow boundary value of S will be transported in all the domain by the velocity field 
6.  The different fluids are distinguished by setting S to different values on Fl, .  . . , rp (thus 
the name pseudoconcentration). The following choice was used: 

(16) 

withp 2 2. The different jumps in the step function (16) will give the position of the interfaces. 
Finally, the equilibrium of the interface, 

~ ~ ~ * i i = c t ~ + ~ . i i ,  K€Xk, k = l ,  ..., p - 1 ,  (17) 

is automatically satisfied by the variational formulation, as we shall see in Section 3. 

R r h  

01 

r b  

Figure 3. Boundary conditions for coextrusion 
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3. VARIATIONAL FORMULATIONS 

Appropriate variational formulations are needed for both the generalized Stokes problem and 
the transport equation for the pseudoconcentration: 

2 a  - (rl( I i I )W) = VP? t i - i i = O ,  (u - 9)s = 0. (18) 

System (18) is a coupled problem for the three unknowns (ii,p,S). To avoid the assembly 
and factorization of a huge matrix and to take advantage of the discontinuous Galerkin method 
which allows the solution of the transport equation on an element-by-element basis, a Picard- 
type iterative scheme will be used to solve this system. Variational formulations are then needed 
for both the generalized Stokes problem and the transport equation. 

3.1. The generalized Stokes problem 

the value of S it is possible to determine the domain Rh where the kth fluid is located. 

(ma,) boundary conditions. Thus r = ress u Tnat and we take v’ E HiesjR)2 defined by 

Let us suppose at this time that S is known (from a previous iteration, for example). From 

The boundary of R is separated into two parts corresponding to essential (ress) and natural 

H ~ ~ % ~ R ) Z  = ( f i E ~ l ( ~ ) 2 1 ~  = 0 on ress}, 

The momentum equation is then multiplied by v’ E HiJR)’ and integrated by parts, while the 
incompressibility condition is multiplied by q E Pz(R)  and integrated over the domain. This 
yields the following variational formulation for the generalized Stokes problem : 

f ( j * ~ 2 q h ( l i , ) ( i ( i i ) : i ( ~ ) ~  dR - ( c h ’ f i ) * v ’  dT - j*!V*v’)p, dR) = 0 vfiEHiesjR)2, (19) 
k =  1 1” .. 

j i a  - ii)q dR = 0 V q  E 9’(R), 

with the viscosity model for the kth fluid given by 

3. I .  1. Equilibrium of the interfaces. As already mentioned, the equilibrium condition 
c k . , i  = c k + l .  f i  is natural with this formulation. Indeed, let us consider the domain of 
Figure 2. Taking successively v’e 9(Rl)  and 6 ~ 9 ( R , ) ,  where R = Rl  u R ,  and where 9(Qi), 
i = 1, 2, is the space of infinitely differentiable functions with compact support, and integrating 
by parts on R l  and R, separately, we get the formulations 

- j ~ , a . ( 2 , i ( I i l ) i ( i i ) ) 6  dR + api*v’ dR = 0, i = 1, 2, (21) 

which means that the momentum equations are satisfied in the distribution sense in each 
domain Ri, i = 1,2. Taking now 6 E Hte_(R)’ and integrating by parts with f i  fixed arbitrarily as 
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The first two terms in the summation vanish, since the momentum equation is satisfied in 
each domain. Using the definition of a (see (2)), we get 

which is equivalent to 

3.1.2. Linearization of the Stokesproblem. The variational formulation (19) is non-linear owing 
to the viscosity model. Moreover, it is constrained by the incompressibility condition. A 
combination of the Newton-Raphson method and the Uzawa algorithm was used to solve 
Stokes-type problems as described in References 15 and 16. The Newton-Raphson method takes 
care of the non-linearities and the Uzawa algorithm enforces the incompressibility condition. 
This gives the following algorithm: 

j 3 0 ( c  + 121L(ti1)12)(”~ 1)’2(~(6iif):y(d)) dR + 2(n - l)qo (c + 12]~( t i f )~z) (n-3) ’z  lQ 
x (~(til):~(6iif))(+(til):y(ij)) dQ + r (V * 6ti,)(a * 6) dR = F(3,, p i )  + r h - 

G I + ,  = t i ,  - 63,, p , + ,  = p ,  - r V * i i , + , ,  if 16tilI < E and l9-iil+,1 < E ,  stop, (25) 

where F is the residual defined by 

F(ii,, p z )  = 2 q(]q(til)])(j(iif):j(d)) dQ - (a. ii) * 6 dS - (V * d)pl dR, (26) I Lat b 
r is a penalization parameter and ‘:’ stands for the double contraction product of two tensors. 

In the variational formulation (25) we have not indicated the different domains Rk for 
simplicity. In fact, the rheological parameters c, I and n are functions of the pseudoconcentration 
S. Since S is known, when computing the elementary matrices, the value of S is evaluated at 
each Gauss point and its value identifies the polymer. The viscosity coefficient then takes the 
value of the corresponding polymer. 

3.2. The transport equation 

A variational formulation is also required for the transport equation (12). We now thus suppose 
that ti is given. 

The solution of the transport equation needs to be very accurate since it determines the 
position of the interfaces. Transport equations are particularly difficult to solve when 
discontinuous solutions are present. This is the reason why it is suggested to transport smooth 
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pseudoconcentration functions in order to avoid numerical  oscillation^.^*' We believe that it 
is possible to transport a discontinuous pseudoconcentration provided that the discontinuous 
Galerkin method is used to solve (12).7*'8,'9 As discussed in Reference 18, the discontinuous 
Galerkin method is among the best in that case. Very sharp discontinuous solutions can be 
computed at the price of very-small-amplitude wiggles in the vicinity of the discontinuities. These 
wiggles do not prevent accurate prediction of interfaces and do not generate numerical 
instabilities. 

One of the main features of this method is that it allows the solution of (12) on an 
element-by-element basis. Indded, since S is discontinuous, it seems natural to use discontinuous 
approximations and to define 

V, = { W I W I K  E Pk(K), V K  E yn}, (27) 

where K is an element of the triangulation and Pk(K) is the set of polynomials of degree k on 
element K .  It is important to remark that no continuity is required at  element interfaces. This 
choice is partly motivated by the fact that the solution S is inevitably discontinuous and has 
the form 

1 i f 2 e R l ,  
0 i f2ER2.  

The discontinuous Galerkin method' takes the following form. On each element K solve 

jK ti - VSw dR - S(ti * fi)w dS = - S-(G - ri)w dS V u  E P,(K). (29) 

Referring to Figure 4, since the approximation is discontinuous at element interfaces, S -  is the 
value of S in the element adjacent to K on the inflow part d K -  of the boundary of element K .  
More precisely, let us define 

8 K -  = ( i~dKIG( i )* f i (K)  < 0 } ,  

S = lim S(2  + &ti) (2 E d K - ) ,  

S -  = lim S(2 - &ti) (2 E K - ) .  

&+O 

&+O 

An important feature of the discontinuous Galerkin method is that equation (29) results in a 
small linear system on each element. It can be easily solved on element K, but only if S -  has 

I 
I 
I 
L - - - - - - - - - 

Figure 4. Two adjacent elements 
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Figure 5. QZ - P ,  element 

already been computed. This implies that the elements must be solved in a proper order. 
Such an order usually exists" when there is no recirculation zone. The idea is to start with 
elements adjacent to an- and follow the flow field ii. A good numbering of the elements (in 
accordance with the flow) accelerates the convergence but is not essential for convergence. If 
the numbering is not optimal or if there exists a recirculation zone in the flow 
field, the elements can be swept many times until convergence. The discontinuous Galerkin 
method is then a block Gauss-Seidel method. 

4. ALGORITHMS 

In this case the Picard algorithm becomes as follows. 

1. For a given value of S the rheological constants in the Carreau model can be deduced at 

2. For a given value of ii the transport equation (12) is solved using the algorithm (29) to 

3. If IIS - S"'"II < E, stop; else S = 3'"" and go to step 1. 

each Gauss point and the Stokes problem (9, (6) is solved with the algorithm (25). 

get a new value of S denoted 3'"". 

4.1. Discretization 

The three variables to discretize are the velocity ii, the pressure p and the pseudoconcentra- 
tion S. For the velocity and pressure the Qz-P, quadratic element was used. Figure 5 illustrates 
this element. This element satisfies the Ladyzenskaya-BabuSka-Brezzi (LBB) condition20*2' 
and is one of the best two-dimensional elements. 

For the pseudoconcentration function S the Q; element depicted in Figure 6 was chosen. A 
Q1 approximation can also be used, but the quadratic element provided the best results. This 
choice was motivated by our experience with viscoelastic fluid flow problems where a transport 
equation has to be solved for the stresses. An LBB condition also exists in that case which is 
satisfied by the above discretizations.22 

Figure 6. The Qi element 
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Figure 7. Schematic view of film casting 

5. THE FILM-CASTING PROBLEM 

In this section we briefly indicate how the developed methodology can be modified for the 
simulation of the film-casting process. Figure 7 gives a schematic view of the problem. We define 
the draw ratio 

Dr = UL/o, (33) 

with U, the draw velocity and 0 the average velocity of the flow at the die exit. As we will 
see, the stability of the interface (between fluid and air) depends on this draw ratio. The dashed 
line of Figure 7 corresponds to the domain illustrated in Figure 8. 

As can be easily seen, the problem is similar to coextrusion with air playing the role of the 
second polymer. Following Reference 17, air is considered as an incompressible fluid of very 
low viscosity. The imposed boundary conditions are 

At the die entry re, a half-parabola with flow rate Q is imposed. A no-slip condition is 
imposed on To, while the flow (and thus the interface) is supposed fully developed with 
ti = (UL, 0) (the draw velocity) on Ts. rb is a symmetry axis. 

As in the coextrusion problem, a value of the pseudoconcentration is imposed at the entrance 
of the domain I-,. Its value will be transported in all the domain by the velocity field. We choose 

E 
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the following function: 

Moreover, a velocity profile will be computed in the air (in Q,). Consequently, it is possible that 
ti - ri < 0 on rh and thus a boundary condition for S must be provided there when necessary. 
When this is the case, S is fixed to zero on rh. 

Here again the jump in the function will give the position of the interface between fluid and air. 

5.1. The free surface condition 

The free surface condition 

is treated as a particular case of (17). Indeed, if we consider o, * ri in the air, 

However, since the viscosity of air is supposed very small with respect to that of the polymer, 
t, - ri N 0. Moreover, equation (1) gives 

which implies that p ,  = constant in Q,. From the condition o, * ri = 0 on rh we conclude that 
p ,=Oand  thuso,*r i -O 

5.2. Solution algorithm 

Both stationary and time-dependent solutions can be computed for this problem. For 
stationary solutions the same algorithm (see Section 4) as for the coextrusion problem is used. 

For time-dependent solutions the transport equation is given by (1 1) where the time derivative 
is discretized by the fully implicit Gear scheme (13). The Picard iterative scheme of Section 4 
then has to be used at each time step. 

6. NUMERICAL RESULTS 

The results for the coextrusion and film-casting problems are now presented. In both cases the 
computations are started on a uniform mesh. When necessary, the mesh can be concentrated 
in some regions of the domain in a very simple manner. For example, in the coextrusion problem 
a solution is computed on a uniform mesh, and if one of the fluid layers is very small, the mesh 
is concentrated in the vicinity of that layer and a new computation is performed on the new 
mesh. This can be seen as a very primitive adaptive method. It is, however, easy to conceive a 
more sophisticated adaptive strategy where one has to locate the discontinuity of the function 
S to decide where to refine the mesh. This strategy was not implemented in this work. 

For the coextrusion problem, simulations with up to five different fluids are presented. For 
the film-casting problem the main difficulty is to catch the movement of the interface in time. 
As we shall see, a Hopf bifurcation depending on the draw ratio and on the power index of the 
Carreau model occurs. 
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Table I. Rheological parameters and flow rates (220 "C) 

Model Polymer l o  (Pa A. (4 n C Flow rate 

Carreau ABS (lower) 
Adheflon (middle) 
PVDF (upper) 

Adheflon (middle) 
PVDF (upper) 

Adheflon (middle) 
PVDF (upper) 

Power law ABS (lower) 

Newton ABS (lower) 

8597 
7381 
5224 

45425 
33896 
1960 1 
8597 
7381 
5224 

0.096 
0.101 
0.093 

1 
1 
1 

1 
1 
1 

0.290 
0.338 
0.443 

0.290 
0.338 
0-443 
1 
1 
1 

130 

10 

130 

10 
130 

10 

3.5 

3.5 

3.5 

6.1. Coextrusion 

The first example is the coextrusion of three polymers. This is a typical example where two 
polymers are coextruded and joined together by an adhesive. The adhesive is also a polymer 
but its width is very small compared with the two polymers. The rheological parameters for the 
different models are given in Table I. They correspond to a realistic coextrusion problem." 

The starting mesh is illustrated in Figure 9, consisting of 30 elements in the y-direction and 
40 elements in the x-direction. The dimension of the domain is 1 x 1.6667. 

Starting with this uniform mesh, the interfaces were computed quite accurately, but owing to 
the coarse mesh, the adhesive layer fell within one element width. To improve the accuracy, the 
mesh was concentrated in the vicinity of the adhesive layer, resulting in the mesh of Figure 10. 

CBWE N 11 1 
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Figure 11. Streamlines for Carreau fluids (three polymers) 
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CHWS I V  11 
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Figure 12. Interface position for Carreau fluids (three polymers) 

Figure 13. Streamlines for power law fluids (three polymers) 
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Figure 14. Interface position for power law fluids (three polymers) 
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Figure 15 Streamlines for Newtonian fluids (three polymers) 
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Figure 16. Interface position for Newtonian fluids (three polymers) 

Figures 11-16 show the solutions obtained with the three models: Carreau, power law and 
Newtonian. Streamlines and interfaces positions are presented, showing no fundamental differ- 
ence between the three models. 

A cross-section of the pseudoconcentration S at x = 1-667 (Figure 17) allows us to compare 
the interface positions for the three models. The three plateaus give the positions of the different 
fluids. Only slight differences can be seen. Small oscillations are present but do not prevent an 

Exit Position of the polymer 

0.2 I 1 
0 0.2 0.4 0.8 0.8 1 

(5i3.V) ; Y - 0. .... 1 

Figure 17. Exit section of pseudoconcentration 
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Poslim of interfaces at entry and exir 
1.2 

'Enterinp' - 
'Ex$ 
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accurate estimation of the interface positions. As explained in Reference 18, other methods would 
add numerical diffusion and the plateau corresponding to the adhesive would be lost. 

Finally, a simulation with five polymers has been conducted. The uniform grid of Figure 9 
and the Newtonian model were used. The constant viscosities are those given in Table I. The 
polymers ABS, Adheflon, PVDF, Adheflon and ABS are ordered from bottom to top of the 
domain with respective flow rates of 10, 20, 10, 30 and 20 (adimensional units). 

CBLO6 IV 11 

\ 

I /  .- I I  

Figure 19. Streamlines for Newtonian fluids (five polymers) 
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I W E  I V  11 
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Figure 20. Interface position for Newtonian fluids (five polymers) 

RLOE N 11 



0.12 

0.1 

0.08 
c P 

5 0.06 

v 

H - 
C - 

0.04 

0.02 

COEXTRUSION AND FILM CASTING 

Draw ratio = 21 and n = 1.00 
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0 200 400 600 800 loo0 1200 1400 16W 
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Figure 22. Time-dependent film width; Dr = 21, n = 1.00 

Figure 18 shows the pseudoconcentration at the entry (x = 0) and exit (x = 1.667) sections of 
the domain. This figure allows us to compare the initial and final positions of the different fluids. 
Streamlines and interface positions are presented in Figures 19 and 20. 

6.2. Film casting 

The solution strategy for the film-casting problem is similar to the one used in the coextrusion 
problem. The dimension of the computational domain is 1 x 24 adimensional units (the die is 
4 units long). In the following the figures have been contracted by a factor of six in the x-direction, 

Draw ratio = 21 and n = 0.75 

0'12 r------ 
0.08 O'( t 

0 f 
m 

f 0.06 
I 
C - 

0.04 

0.02 1 
0 200 400 600 800 loo0 1200 1400 1M)O 

time evolution 

Figure 23. Time-dependent film width; Dr = 21, n = 0.75 
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Draw ratio = 21 and n = 0.50 

0'12 r-----7 
0.08 O'l t 

1000 1500 2000 2500 3000 3500 4000 4500 5000 
lime evolution 

Figure 24. Time-dependent film width; Dr = 21, n = 0.50 

because it is barely possible to see anything when using the original dimension. Starting with a 
uniform mesh of 20 elements in the y-direction and 30 elements in the x-direction, a solution is 
computed for a Newtonian fluid and the mesh is concentrated in the vicinity of the free surface 
(Figure 21). A new computation is then performed. It is worth noticing that the solution on the 
uniform mesh is already acceptable, but since our concern is the time-dependent case which 
results in small-amplitude oscillations, we felt it necessary to concentrate the mesh. This mesh 
is not very elegant, but it concentrates the mesh in the critical region. 
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Figure 25. Time-dependent film width; Dr = 21, n = 0.25 
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Figure 27. Interface position at time To + 4 5  
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Figure 29. Interface position at time To + 13.5 
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Figure 30. Interface position at time To + 18 
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Figure 31. Interface position at time To + 22.5 
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The draw ratio is then slowly increased and stationary solutions are obtained up to Dr = 20. 
From now on the mesh will be kept fixed. It is well knownI3 that this problem becomes 
time-dependent at a draw ratio around 21 in the Newtonian case (n = 1). Indeed, a Hopf 
bifurcation occurs and the free surface starts oscillating. The width of the film at the exit section 
varies with time as shown in Figure 22. The next figures show the influence of the Carreau 
parameter n on the amplitude of the oscillations. Results are presented for n = 0.75,0-5 and 0.25 
(Figures 23-25 respectively). A typical time-dependent free surface is illustrated in Figures 26-3 1. 

0 

0.043 
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

n 

Figure 33. Variation in frequency with n 
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Figure 34. Fourier analysis 

The pulsating nature of the flow is easily seen by looking at the swelling of the free surface and 
the variation in the film width at the exit section. 

It is clear that shear thinning has a strong influence on the amplitude and a moderate one 
on the frequency, as can be seen in Figures 32 and 33 respectively. This is confirmed by the 
Fourier analysis of Figure 34. As n decreases, the amplitude of the oscillations increases while 
the frequency decreases. 

Finally, we have investigated the influence of shear thinning on the critical draw ratio where 
the Hopf bifurcation occurs. For n = 0.25, starting from the solution at Dr = 21, the draw ratio 
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Figure 35. Evolution to a time-dependent solution; Dr = 19 



56 A. FORTIN, P. CARRIER AND Y. DEMAY 

Draw ratio I 18 and n = 0.25 

o.056 3 
0.0575 

0.057 

B 0’05= 
Z 0.056 
.= 
I 

0.0555 

0.055 

0.0545 

0.054 
0 200 400 600 800 1Mx) 1200 1400 

time evolution 

Figure 36. Evolution to a stationary solution; Dr = 18 

was slowly decreased until the solution became stationary. At Dr = 19 the solution is still 
time-dependent, as can be seen in Figure 35. The solution is, however, stationary at Dr = 18 
(Figure 36) and the critical draw ratio is thus somewhere around Dr = 18.5. It is therefore 
concluded that film casting of shear-thinning fluids will become unstable at a lower draw ratio. 

7. CONCLUSIONS 

This paper presents a numerical simulation of the coextrusion and film-casting processes. The 
developed numerical method allows the computation of both stationary and time-dependent 
free surfaces in an efficient manner. 

The results for film casting and coextrusion with up to five polymers show the flexibility of 
the algorithm. This opens the door to the investigation of the influence of the models and 
rheological parameters on different polymer processes where free surfaces frequently occur. 

A three-dimensional version of the present method is currently under de~e loprnen t .~~  Our 
goal is to study encapsulation, which is a purely three-dimensional phenomenon where the less 
viscous fluid tends to encapsulate (lubricate) the more viscous one. Linear stability for this 
problem has been studied in Reference 25. Preliminary results show that encapsulation can be 
captured by our method. 
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